GTP cyclohydrolase 1 downregulation contributes to glucocorticoid hypertension in rats.
نویسندگان
چکیده
NO, a potent vasodilator, has been implicated in the pathogenesis of glucocorticoid hypertension. NO synthase requires the cofactor tetrahydrobiopterin for the production of NO. Guanosine-triphosphate (GTP) cyclohydrolase 1 is the rate-limiting enzyme for the production of tetrahydrobiopterin, and in the presence of low levels of tetrahydrobiopterin, NO production is decreased. We have previously shown that tetrahydrobiopterin-dependent vasodilation is impaired in rats with glucocorticoid hypertension. However, the role GTP cyclohydrolase 1 plays in the pathogenesis of glucocorticoid hypertension has not been investigated. Therefore, we tested the hypothesis that downregulation of GTP cyclohydrolase 1 contributes to the development and maintenance of glucocorticoid hypertension in rats. Rats were implanted with dexamethasone (0.79 mg x kg(-1) x d(-1)) or sham-operated, and systolic blood pressures were measured at baseline and after 12 hours, 4 days, or 15 days. Blood pressure increased significantly after dexamethasone treatment. Isometric force generation was measured in endothelium-intact aortic ring segments. Aortas from dexamethasone-treated rats exhibited a significant time-dependent decrease in maximal relaxation to acetylcholine compared with control rats. Incubation with sepiapterin (10(-4) mol/L, 1 hour), which produces tetrahydrobiopterin via a salvage pathway, restored vasodilation to acetylcholine in aortas from 4- and 15-day dexamethasone-treated rats. GTP cyclohydrolase 1 mRNA expression levels also significantly decreased in a time-dependent manner. These results support the hypothesis that downregulation of GTP cyclohydrolase 1 contributes to increased blood pressure in glucocorticoid hypertensive rats.
منابع مشابه
Interferon- Gamma- Inducible Guanosine Triphosphate Cyclohydrolase 1 (GTP-CH1) Pathway Is Associated with Frailty in Egyptian Elderly
Background: Chronic low-grade inflammation may be a cardinal pathophysiologic feature in the pathogenesis of frailty. Interferon-gamma (INF-γ) is an understudied proinflammatory cytokine in frailty that induces many inflammatory pathways including the guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway. Our aim was to evaluate the GTP-CH1 pathway in Egyptian frail elderly subjects. ...
متن کاملGTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking wa...
متن کاملTyrosine nitration of PA700 activates the 26S proteasome to induce endothelial dysfunction in mice with angiotensin II-induced hypertension.
The ubiquitin-proteasome system has been implicated in oxidative stress-induced endothelial dysfunction in cardiovascular diseases. However, the mechanism by which oxidative stress alters the ubiquitin-proteasome system is poorly defined. The present study was conducted to determine whether oxidative modifications of PA700, a 26S proteasome regulatory subunit, contributes to angiotensin II (Ang...
متن کاملEndothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension.
BACKGROUND Tetrahydrobiopterin (BH4) is an essential cofactor of endothelial nitric oxide synthase (eNOS). When BH4 levels are decreased, eNOS becomes uncoupled to produce superoxide anion (O2(-)) instead of NO, which contributes to endothelial dysfunction. Deoxycorticosterone acetate (DOCA)-salt hypertension is characterized by a suppressed plasma renin level due to sodium retention but manife...
متن کاملGTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.
RATIONALE GTP cyclohydrolase I (GTPCH-1) is the rate-limiting enzyme involved in de novo biosynthesis of tetrahydrobiopterin (BH(4)), an essential cofactor for NO synthases and aromatic amino acid hydroxylases. GTPCH-1 undergoes negative feedback regulation by its end-product BH(4) via interaction with the GTP cyclohydrolase feedback regulatory protein (GFRP). Such a negative feedback mechanism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 41 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2003